Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery
نویسندگان
چکیده
In combination with compressive sensing, a successful reconstruction scheme called Curvelet-based Recovery by Sparsitypromoting Inversion (CRSI) has been developed, and has proven to be useful for seismic data processing. One of the most important issues for CRSI is the sampling scheme, which can greatly affect the quality of reconstruction. Unlike usual regular undersampling, stochastic sampling can convert aliases to easy-to-eliminate noise. Some stochastic sampling methods have been developed for CRSI, e.g. jittered sampling, however most have only been applied to 1D sampling along a line. Seismic datasets are usually higher dimensional and very large, thus it is desirable and often necessary to develop higher dimensional sampling methods to deal with these data. For dimensions higher than one, few results have been reported, except uniform random sampling, which does not perform well. In the present paper, we explore 2D sampling methodologies for curvelet-based reconstruction, possessing sampling spectra with blue noise characteristics, such as Poisson Disk sampling, Farthest Point Sampling, and the 2D extension of jittered sampling. These sampling methods are shown to lead to better recovery and results are compared to the other more traditional sampling protocols.
منابع مشابه
Optimized Compressed Sensing for Curvelet-based Seismic Data Reconstruction
Compressed sensing (CS) or compressive sampling provides a new sampling theory to reduce data acquisition, which says that compressible signals can be exactly reconstructed from highly incomplete sets of measurements. Very recently, the CS has been applied for seismic exploration and started to compact the traditional data acquisition. In this paper, we present an optimized sampling strategy fo...
متن کاملNon-parametric seismic data recovery with curvelet frames
Seismic data recovery from data with missing traces on otherwise regular acquisition grids forms a crucial step in the seismic processing flow. For instance, unsuccessful recovery leads to imaging artifacts and to erroneous predictions for the multiples, adversely affecting the performance of multiple elimination. A non-parametric transform-based recovery method is presented that exploits the c...
متن کاملSimply denoise: wavefield reconstruction via jittered undersampling
In this paper, we present a new discrete undersampling scheme designed to favor wavefield reconstruction by sparsity-promoting inversion with transform elements that are localized in the Fourier domain. Our work is motivated by empirical observations in the seismic community, corroborated by recent results from compressive sampling, which indicate favorable (wavefield) reconstructions from rand...
متن کاملBeyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data
We propose a robust interpolation scheme for aliased regularly sampled seismic data that uses the curvelet transform. In a first pass, the curvelet transform is used to compute the curvelet coefficients of the aliased seismic data. The aforementioned coefficients are divided into two groups of scales: alias-free and alias-contaminated scales. The alias-free curvelet coefficients are upscaled to...
متن کاملSeismic Signal Enhancement Using 2D Fast Discrete Curvelet Transform --- An Application to VSP and Common-Shot Gathers From a Hardrock Environment
Obtaining seismic images with good quality in hardrock environments has been challenging. This condition applies to many mineral explorations using seismic methods including our study area where the data quality is strongly affected by soft, near-surface materials and a reflector with low contrast in rock physical properties. Until recently, no effective processing has been applied to the seism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009